Group leader: Daniel E. Shulz
Sensori-motor Integration & Plasticity
In brief
Tactile information is acquired and processed in the brain through concerted interactions between movement and sensation. We study neuronal processes responsible for the coding of sensorimotor information by using a comprehensive approach including electrophysiological, imaging, optogenetic and behavioral strategies in rodents. Our general strategy is to probe the brain with controlled natural tactile inputs in vivo, in order to gain understanding of the functional architecture of the system and the plasticity rules that underlie perceptual learning and motor control.

Tactile information is acquired and processed in the brain through concerted interactions between movement and sensation. Sensory-motor integration is essential to process and interpret tactile information coming from the periphery, but also to adjust motor commands in real time.
We study the neural processes responsible for encoding sensory and motor information using a multi-scale approach including electrophysiological, imaging, optogenetic and behavioral techniques in rodents. Specifically, we combine optical and electrophysiological approaches to record and manipulate cortical activity at different scales, from neural networks extended over large cortical areas to assemblies of single neurons.
Our general strategy is to probe the brain with natural tactile inputs controlled in vivo, in order to better understand the functional architecture of the system and the rules of plasticity that underlie perceptual learning and motor control. Within the framework of predictive coding theory, we are interested in how the brain builds an internal model of our interactions with the environment in such a way as to generate prospective expectations about the outside world. In addition, by a so-called closed-loop approach, we are interested in the role of sensory input in motor control in the context of brain-machine interfaces. This approach is complemented by the development of innovative neuro-prostheses, motorized and equipped with sensors in mice, which coupled with brain-machine interfaces allow us to study sensory-motor integration in real conditions.
Tactile sensory coding, plasticity and perception (led by Daniel Shulz)
The vibrissal system of rodents has become one of the dominant models for investigating the mechanisms of sensory information processing. Our research concerns central neuronal mechanisms, in the primary somatosensory cortex, responsible for the processing of sensory information and tactile perception, as well as their short and long term activity-dependent regulation. Our strategy is that if we probe the system with controlled “natural” sensory inputs in an in vivo preparation, progress would be obtained in our understanding of the functional architecture of the system and the plasticity rules that underlie perceptual learning. To that purpose we developed a vibrissal stimulation Matrix that allows independent deflection of up to 24 vibrissae at behaviorally relevant speed and acceleration. This device gave us an unprecedented possibility to apply complex stimuli spanning most of the sensory field of the vibrissal system. We demonstrated a new kind of thalamic and cortical integration of tactile information spatially distributed on the whisker pad that puts into question the canonical view of the organization of the somatosensory system as a sum of independent cortical columns. In addition, using the Matrix, we demonstrated co-existing coding schemes (similar to those found in V1 and MT areas of the visual system) in the primary somatosensory cortex that depend on the statistics of the tactile input.
Predictive processes at play in somatosensation (led by Isabelle Ferezou)
Expectancy is an essential function of the nervous system, which allows the organism to react to the external context in an effective way. Cortical circuits are thought to be involved in the computation of an internal model of our interactions with the environment, which generate sensory expectations according to the context, past sensory experience, and current motor actions. According to predictive coding theories, in case of mismatch between such expectations and the actual experience, an error signal is generated, which is key to update the internal model and adjust the motor commands, thus optimizing behavior. Several experimental studies invite us to think that cortical primary sensory areas, which receive both bottom up projections carrying sensory information from the periphery, and top-down projections from higher order and motor areas, are likely to play a key role in these predictive processes. Because the sense of touch particularly relies on efficient sensorimotor integration, we use the tactile whisker system of mice as a model to try revealing signals linked to the prediction of sensory inputs in the primary somatosensory cortex. We have adapted mesoscale imaging techniques to awake behaving animals engaged in both head-fixed and freely moving sensorimotor tasks in order to record cortical dynamics while introducing deviances between expected and received sensory inputs.
Sensorimotor learning studied using brain-machine interfaces (led by Valérie Ego-Stengel)
We are interested in the neural mechanisms underlying the learning and execution of a sensorimotor skill, in the context of natural movements and neuroprostheses. To this end, we are taking advantage of the brain-machine interface for mice that has been developed in the laboratory. In particular, we are studying how the motor cortex integrates somatosensory information during motor actions in an intact animal engaged in learning a task.
More specifically, in these experiments, we record the activity of individual neurons in the motor cortex while the mice receive stimulation patterns on the representation of whiskers in the somatosensory cortex. The mice then perform a closed-loop learning task. For example, the mouse learns to move a virtual prosthesis (cursor) while receiving information about the state of the prosthesis through optogenetic patterns projected onto the cortical surface. This enables us to study the spatial and temporal characteristics of the stimulation patterns which are most effective for learning motor skills. As well as providing a better understanding of cortical mechanisms, the results could lead to a direct application to neuroprostheses.
Development of innovative neuroprostheses (led by Luc Estebanez)
Upper limb cortical neuroprostheses promise to restore the autonomy of amputated or quadriplegic patients by connecting a brain-machine interface to a prosthetic arm equipped with motors and sensors. To design and test such neuroprostheses in the mouse model, we have developed a miniature, motorized mouse forelimb prosthesis, including touch sensors. We combine this device with our tools dedicated to the study of cortical sensory-motor integration. By this means we study the conditions of optimal motor control of the prosthesis, and we aim to identify the structure of the sensory feedback that is necessary for prosthesis embodiment.
Selected publications
- Henri Lassagne, Dorian Goueytes, Daniel Shulz, Luc Estebanez, Valérie Ego-Stengel. Continuity within the somatosensory cortical map facilitates learning. Cell Reports, Elsevier Inc, 2022, 39 (1), pp.110617 hal-03633778, doi: 10.1016/j.celrep.2022.110617.
- Evan R. Harrell, Matías A. Goldin, Brice Bathellier, Daniel E. Shulz (2020) An elaborate sweep-stick code in rat barrel cortex. Science Advances 6 (38):eabb7189. DOI: 10.1126/sciadv.abb7189
- Matias A. Goldin, Evan R. Harrell, Luc Estebanez and Daniel E. Shulz (2018) Rich spatio-temporal stimulus dynamics unveil sensory specialization in cortical area S2. Nature Communications 9:4053, DOI: 10.1038/s41467-018-06585-4
- Eugenia Vilarchao, Luc Estebanez, Daniel Shulz and Isabelle Férézou (2018) Supra-barrel distribution of directional tuning for global motion in the mouse somatosensory cortex. Cell reports, 22 no13, 3534-3547. DOI: 10.1016/j.celrep.2018.03.006
- Luc Estebanez, Julien Bertherat, Daniel E. Shulz, Laurent Bourdieu, and Jean-François Léger (2016) A radial map of multiwhisker correlation selectivity in the rat barrel cortex. Nature Communications, 7: 13528. DOI: 10.1038/ncomms13528
- Luc Estebanez, Sami El Boustani, Alain Destexhe and Daniel Shulz (2012) Correlated input reveals coexisting coding schemes in a sensory cortex, Nature Neuroscience 15 No12: 1691-1699. DOI: 10.1038/nn.3258
- Vincent Jacob, Julie Le Cam, Valerie Ego-Stengel and Daniel Shulz (2008) Emergent Properties of Tactile Scenes Selectively Activate Barrel Cortex Neurons, Neuron 60: 1112-1125. DOI: 10.1016/j.neuron.2008.10.017
- Vincent Jacob, Daniel J. Brasier, Irina Erchova, Daniel E. Feldman and Daniel Shulz (2007) Spike timing-dependent synaptic depression in the in vivo barrel cortex of the rat, J Neurosci 27: 1271-84. DOI: 10.1523/JNEUROSCI.4264-06.2007
Members
- Guillaume Hucher, Assistant Engineer
Homeostasis, Perception & States (HOPES), Sensori-motor Integration & Plasticityroom 3228
• Timothé Jost-Mousseau, Max Chalabi, Daniel E Shulz, Isabelle Férézou. Imaging the brain in action: a motorized optical rotary joint for wide field fibroscopy in freely moving animals. Neurophotonics, 2023, 10 (01), pp.015009. hal-04049172 doi: 10.1117/1.NPh.10.1.015009.
2022
• Dorian Goueytes, Henri Lassagne, Daniel Shulz, Valérie Ego-Stengel, Luc Estebanez. Learning in a closed-loop brain-machine interface with distributed optogenetic cortical feedback. Journal of Neural Engineering, 2022, 19 (6), pp.066045 hal-03915204 doi: 10.1088/1741-2552/acab87.
• Henri Lassagne, Dorian Goueytes, Daniel Shulz, Luc Estebanez, Valérie Ego-Stengel. Continuity within the somatosensory cortical map facilitates learning. Cell Reports, Elsevier Inc, 2022, 39 (1), pp.110617 hal-03633778, doi: 10.1016/j.celrep.2022.110617.
2021
• Matteo Di Volo, Isabelle Férézou. Nonlinear collision between anisotropic propagating waves in mouse somatosensory cortex. Scientific Reports, 2021, 11 (1), pp.19630. hal-03321875 doi: 10.1038/s41598-021-99057-7.
2020
• Evan Harrell, Matias Goldin, Brice Bathellier, and Daniel Shulz. An elaborate sweep-stick code in rat barrel cortex. Science Advances , 6(38):eabb7189, September 2020. doi: 10.1126/sciadv.abb7189.
• Sophie Hubatz, Guillaume Hucher, Daniel E. Shulz, and Isabelle Ferezou. Spatiotemporal properties of whisker-evoked tactile responses in the mouse secondary somatosensory cortex. Scientific Reports, 10 (1):763, January 2020. doi: 10.1038/s41598-020-57684-6.
2019
• Valérie Ego-Stengel, Aamir Abbasi, Margot Larroche, Henri Lassagne, Yves Boubenec, and Daniel E. Shulz. Mechanical coupling through the skin affects whisker movements and tactile information encoding. Journal of Neurophysiology, 122(4):1606-1622, October 2019. doi: 10.1152/jn.00863.2018.
2018
• Matias Goldin, Luc Estebanez, and Daniel E. Shulz. Rich spatio-temporal stimulus dynamics unveil sensory specialization in cortical area S2. Nature Communications, 9(1):4053, October 2018. doi: 10.1038/s41467-018-06585-4.
• Aamir Abbasi, Dorian Goueytes, Daniel E. Shulz, Valérie Ego-Stengel, and Luc Estebanez. A fast intracortical brain-machine interface with patterned optogenetic feedback. Journal of Neural Engineering, 15(4):046011, August 2018. doi: 10.1088/1741-2552/aabb80.
• Maria Eugenia Vilarchao, Luc Estebanez, Daniel E. Shulz, and Isabelle Ferezou. Supra-barrel Distribution of Directional Tuning for Global Motion in the Mouse Somatosensory Cortex. Cell Reports, 22(13):3534-3547, March 2018. doi: 10.1016/j.celrep.2018.03.006.
• Luc Estebanez, Isabelle Ferezou, Valérie Ego-Stengel, and Daniel E. Shulz. Representation of Tactile Scenes in the Rodent Barrel Cortex. Neuroscience, 368:81-94, January 2018. doi: 10.1016/j.neuroscience.2017.08.039.
2017
• Pauline Kerekes, Aurélie Daret, Daniel E. Shulz, and Valérie Ego-Stengel. Bilateral Discrimination of Tactile Patterns without Whisking in Freely Running Rats. Journal of Neuroscience, 37(32):7567-7579, August 2017. doi: 10.1523/JNEUROSCI.0528-17.2017.
2016
• Lorraine Perronnet, Maria Eugenia Vilarchao, Guillaume Hucher, Daniel E. Shulz, Gabriel Peyré, and Isabelle Ferezou. An automated workflow for the anatomo-functional mapping of the barrel cortex. Journal of Neuroscience Methods, page 11, April 2016. doi: 10.1016/j.jneumeth.2015.09.008.
• Luc Estebanez, Julien Bertherat, Daniel E. Shulz, Laurent Bourdieu, and Jean-Francois Leger. A radial map of multi-whisker correlation selectivity in the rat barrel cortex. Nature Communications, (7):13528, 2016. doi: 10.1038/ncomms13528.
2014
• Yves Boubenec, Laure Nayelie Claverie, Daniel Shulz, and Georges Debrégeas. An amplitude modulation/demodulation scheme for whisker-based texture perception. Journal of Neuroscience, 34(33):10832-43, August 2014. doi: 10.1523/JNEUROSCI.0534-14.2014.
• Pierre-Jean Arduin, Yves Frégnac, Daniel Shulz, and Valérie Ego-Stengel. Bidirectional control of a one-dimensional robotic actuator by operant conditioning of a single unit in rat motor cortex. Frontiers in Aging Neuroscience, 8(16):206, July 2014. doi: 10.3389/fnins.2014.00206.
• Luc Estebanez, Sami El Boustani, Alain Destexhe, and Daniel Shulz. [What the whiskers tell the tactile brain]. médecine/sciences, 30(1):93-8, January 2014. doi: 10.1051/medsci/20143001019.
2013
• Pierre-Jean Arduin, Yves Fréegnac, Daniel Shulz, and Valérie Ego-Stengel. “Master” neurons induced by operant conditioning in rat motor cortex during a brain-machine interface task. Journal of Neuroscience, 33(19):8308-20, May 2013. doi: 10.1523/JNEUROSCI.2744-12.2013.
2012
• Luc Estebanez, Sami El Boustani, Alain Destexhe, and Daniel Shulz. Correlated input reveals coexisting coding schemes in a sensory cortex. Nature Neuroscience, 15(12):1691-9, December 2012. doi: 10.1038/nn.3258.
• Samuel Garcia, Clément Léna, Pierre Meyrand, Christophe Pouzat, Daniel E Shulz, and Michael Zugaro. Editorial: Neuronal ensemble recordings in integrative neuroscience. Journal of Physiology – Paris, 106(3-4):57, June 2012. doi: 10.1016/j.jphysparis.2012.05.003.
• Valérie Ego-Stengel, Julie Le Cam, and Daniel Shulz. Coding of apparent motion in the thalamic nucleus of the rat vibrissal somatosensory system. Journal of Neuroscience, 32(10):3339-51, March 2012. doi: 10.1523/JNEUROSCI.3890-11.2012.
• Daniel J Calvo, Diego A Golombek, and Daniel Shulz. A celebration of Franco-Argentinean neuroscience. Journal of Physiology – Paris, 106(1-2):1, January 2012. doi: 10.1016/j.jphysparis.2012.04.001.
• Yves Boubenec, Daniel Shulz, and Georges Debrégeas. Whisker encoding of mechanical events during active tactile exploration. Frontiers in Behavioral Neuroscience, 6:74, 2012. doi: 10.3389/fnbeh.2012.00074.
2011
• Julie Le Cam, Luc Estebanez, Vincent Jacob, and Daniel Shulz. Spatial structure of multiwhisker receptive fields in the barrel cortex is stimulus dependent. Journal of Neurophysiology, 106(2): 986-98), August 2011. doi: 10.1152/jn.00044.2011.
2010
• Vincent Jacob, Luc Estebanez, Julie Le Cam, Jean-Yves Tiercelin, Patrick Parra, Gérard Parésys, and Daniel Shulz. The Matrix: a new tool for probing the whisker-to-barrel system with natural stimuli. Journal of Neuroscience Methods, 189(1):65-74, May 2010. doi: 10.1016/j.jneumeth.2010.03.020.
• Daniel Shulz and Vincent Jacob. Spike-timing-dependent plasticity in the intact brain: counteracting spurious spike coincidences. Frontiers in Synaptic Neuroscience, 2:137, 2010. doi: 10.3389/fnsyn.2010.00137.
• Yves Frégnac, Marc Pananceau, Alice René, Nazyed Huguet, Olivier Marre, Manuel Levy, and Daniel Shulz. A Re-Examination of Hebbian-Covariance Rules and Spike Timing-Dependent Plasticity in Cat Visual Cortex in vivo. Frontiers in Synaptic Neuroscience, 2:147, 2010. doi: 10.3389/fnsyn.2010.00147.
2008
• Vincent Jacob, Julie Le Cam, Valérie Ego-Stengel, and Daniel Shulz. Emergent properties of tactile scenes selectively activate barrel cortex neurons. Neuron, 60(6):1112-25, December 2008. doi: 10.1016/j.neuron.2008.10.017.
2007
• Vincent Jacob, Daniel J Brasier, Irina Erchova, Dan Feldman, and Daniel Shulz. Spike timingdependent synaptic depression in the in vivo barrel cortex of the rat. Journal of Neuroscience, 27(6):1271-84, February 2007. doi: 10.1523/JNEUROSCI.4264-06.2007.
2005
• Valerie Ego-Stengel, Tadeu Mello E. Souza, Vincent Jacob, and Daniel Shulz. Spatiotemporal characteristics of neuronal sensory integration in the barrel cortex of the rat. Journal of Neurophysiology, 93: 1450, 2005. doi: 10.1152/jn.00912.2004.
2003
• Daniel Shulz, Valérie Ego-Stengel, and Ehud Ahissar. Acetylcholine-dependent potentiation of temporal frequency representation in the barrel cortex does not depend on response magnitude during conditioning. Journal of Physiology – Paris, 97(4-6):431-9, 2003. doi: 10.1016/j.jphysparis.2004.01.001.
2002
• Valérie Ego-Stengel, Vincent Bringuier, and Daniel Shulz. Noradrenergic modulation of functional selectivity in the cat visual cortex: an in vivo extracellular and intracellular study. Neuroscience, 111 (2):275-89, 2002. doi: 10.1016/S0306-4522(02)00011-8.
2001
• Valérie Ego-Stengel, Daniel Shulz, Sebastian Haidarliu, Ronen Sosnik, and Ehud Ahissar. Acetylcholine-dependent induction and expression of functional plasticity in the barrel cortex of the adult rat. Journal of Neurophysiology, 86(1):422-37, July 2001.
2000
• Daniel Shulz. Memories of memories: the endless alteration of the engram. Neuron, 28(1):25-9, October 2000. doi: 10.1016/S0896-6273(00)00082-9.
• Daniel. E. Shulz, R. Sosnik, Valérie Ego, S. Haidarliu, and E. Ahissar. A neuronal analogue of state-dependent learning. Nature, 403(6769):549-53, February 2000. doi: 10.1038/35000586.
Chapitres de livres
• Valérie Burgos Blondelle, Jean-Gael Barbara, Buffetault Aurore, Yves Carton, Dujonc Isabelle, Yves Fregnac, Daniel Shulz, David Viterbo, and Guthleben Denis. Histoire d’une cité scientifique . In Histoire d’une cité scientifique. Le campus du CNRS à Gif-sur-Yvette (1946-2016). cnrs editions, December 2016. URL https://hal.archives-ouvertes.fr/hal-01557391.
• Daniel Shulz and Daniel E. Feldman. Spike Timing Dependent Plasticity in Development. In John Rubenstein (Eds) Pasko Rakic, editor, Developmental Neuroscience: A Comprehensive Reference, page Non spéciale. Academic Press, 2012. URL https://hal.archives-ouvertes.fr/hal-00739680.
• Daniel Shulz and Yves Frégnac. From sensation to perception. In George F. Koob, Michel Le Moal, and Richard F Thompson (Eds), editors, Encyclopedia of Behavioural Neuroscience, Volume 1, pages 550-558. Elsevier Science, 2010. URL https://hal.archives-ouvertes.fr/hal-00739642.
• Daniel Shulz. Neurones et apprentissage. In Gènes et culture: Enveloppe Génétique et Variabilité Culturelle, Symposium du Collège de France, 2002, page 142. Odile Jacob, September 2003. Jean-Pierre Changeux, editor. ISBN : 2738113109. URL https://hal.archives-ouvertes.fr/hal-00123872.
Burning questions in neuroscience. Master “Computational Neuroscience and Neuroengineering” (M2-CNN, Université Paris-Saclay)
Anatomo-functional principles of organization of haptic systems. Master “Integrative Neurosciences” (M1, Module ENS-N3, École Normale Supérieure Paris).
Sensory systems: the example of the haptic sense. Master “Interface Physique Biologie” (M2, Université Paris-Diderot).
Anatomo-functional principles of organization of haptic and pain systems. Master “Training to higher education in life sicences” (M2 FESup, Agrégation BGB, Ecole Normale Supérieure Paris-Saclay)
Valérie Ego-Stengel
Closed-loop Neuroscience. Master “Computational Neuroscience and Neuroengineering” (M2-CNN, Université Paris-Saclay). Valérie Ego-Stengel, In charge of the training module.
Brain-Machine interfaces. (2nd year, École CentraleSupélec.)
Neurobiology. (3rd year, Ecole Polytechnique). Valérie Ego-Stengel, In charge of the training module.
Isabelle Férézou
Methods for measuring and actuating neuronal activity, principles and applications. Master “Computational Neuroscience and Neuroengineering” (M2-CNN, Université Paris-Saclay). Isabelle Férézou, In charge of the training module.
Cortical processing of tactile sensory information. Master “Computational Neuroscience and Neuroengineering” (M2-CNN, Université Paris-Saclay).
Imaging the spatiotemporal dynamics of cortical activity at the mesoscopic scale. “Interdisciplinary Master’s in Life Sciences” (ENS Paris).
Luc Estebanez
Organization of the somatosensory system. Master “Computational Neuroscience and Neuroengineering” (M2-CNN, Université Paris-Saclay).
Brain-machine interfaces. B.Sc. in Biology (2nd year, Université Paris-Saclay).
« Signalisations et Réseaux Intégratifs en Biologie » (ED568 BIOSIGNE)
https://www.universite-paris-saclay.fr/ecoles-doctorales/signalisations-et-reseaux-integratifs-en-biologie-biosigne
Graduate students:
Clément Picard (2022-…)
Supervisor: Luc Estebanez
Co-Supervisor : Valérie Ego-Stengel
Project : Binding Cortical Waves Flow to Neuroprosthesis Control in Mice.
Max Chalabi-Prat (2021-…)
Supervisor: Isabelle Férézou
Project : Visualizing neuronal correlates of sensory processing in the barrel cortex of mice engaged in a whisker-guided locomotion task.
Edouard Ferrand (2021-…)
Supervisor: Luc Estebanez
Project : Interfaçage d’une prothèse bi-directionnelle chez la souris.
Zineb Hayatou (2020-…)
Supervisor: Luc Estebanez
Co-Supervisor: Antoine Chaillet
Project : Étude dans le modèle murin de l’appropriation d’une prothèse contrôlée par une interface cerveau-machine.
Fan Yang (2021-…)
Supervisor: Isabelle Férézou
Co-Supervisor: Laurent Bourdieu (ENS Paris)
Project : The cellular and network mechanisms underlying expectancy of predictable tactile stimuli.
Alumni:
2018-2023 Henri Lassagne
SupervisorCo-Supervisor: Luc Estebanez
Project: Optimizing cortical feedback strategies for a closed-loop brain machine interface.
2018-2022 Timothé jost Mousseau
Supervisor: Isabelle Férézou
Project : Study of the cortical integration of complex tactile sensory stimuli in the behaving mouse.
2016-2019 Dorian Goueytes (3C UPMC)
Supervisor: Dan Shulz
Co-Supervisor: Valérie Ego-Stengel
Co-Supervisor: Luc Estebanez
Project : Exploring sensorimotor control using an ultra-fast closed loop brain-machine interface in rodents
2016-2018 Aamir Abbasi (FdV, Paris V)
Supervisor: Valérie Ego-Stengel
Co-Supervisor: Luc Estebanez
Co-Supervisor: Dan Shulz
Project : Integration of sensory feedback in a closed-loop cortical brain-machine interface requires somatotopy
2013-2017 Pauline Kerekes (3C, Paris UPMC)
Supervisor: Valérie Ego-Stengel
Co-Supervisor: Dan Shulz
Project : Behavioral and electrophysiological study of spatial pattern discrimination in the rat
2011-2015 Eugenia Vilarchao (FdV, Paris Descartes)
Supervisor: Isabelle Férézou
Co-Supervisor: Dan Shulz
Project : Spatiotemporal properties of sensory integration in the mouse barrel cortex
2008-2012 Yves Boubenec (3C, Paris UPMC)
Supervisor: Dan Shulz
Co-Supervisor: Georges Debrégeas (ENS Paris)
Project: Collecte d’information tactile chez le rat : biomécanique de la vibrisse et stratégie d’exploration
2008-2011 Pierre-Jean Arduin (FdV, Paris Descartes)
Supervisor: Dan Shulz
Co-Supervisor: Yves Frégnac
Co-Supervisor: Valérie Ego-Stengel
Project: Conditionnement opérant de neurones pour une contrôle gradué de prothèses.
2007-2012 Julien Berthérat (ENS, Paris Descartes)
Supervisor: Laurent Bourdieu (ENS Paris)
Co-Supervisor: Dan Shulz
Project: Etude en microscopie de fluorescence à deux photons in vivo de l’intégration multi vibrissale chez le rat.
2007-2011 Luc Estebanez (ENS, Paris Descartes)
Supervisor: Dan Shulz
Co-Supervisor: Laurent Bourdieu (ENS Paris)
Project: Caractérisation des traitements sensoriels dans le cortex à tonneaux du rat anesthésié.
2006-2010 Julie Le Cam (Paris UPMC)
Supervisor: Dan Shulz
Project: Représentations de scènes tactiles complexes dans la boucle thalamo-corticale du système vibrissal
2003-2007 Vincent Jacob (Paris UPMC)
Supervisor: Dan Shulz
Project: Intégration spatio-temporelle de scènes tactiles et plasticité fonctionnelle dans le cortex à tonneaux du rat.
1996-2001 Valérie Ego (Paris UPMC)
Supervisor: Dan Shulz
Project: Neuromodulation et plasticité fonctionnelle des neurones corticaux: Étude dans les cortex primaires visuel et somatosensoriel
Find our news at:
https://twitter.com/touchmovelab