Institut NeuroPSI - UMR9197
CNRS Université Paris-Saclay
Campus CEA Saclay
Saclay, FRANCE
Dr. Andrew Davison
Chargé de Recherche
Neuroinformatique
andrew.davison cnrs.fr
+33(0)1 69 82 34 51, bureau 3149
ORCID : 0000-0002-4793-7541
Activités de recherche
I am a senior research scientist in the ICN department, where I lead the Neuroinformatics group. You might also be interested in my personal homepage or my Twitter feed.
My main research interests are in large-scale, data-constrained, biologically-detailed modelling of neuronal networks. My work at the moment has several strands:
- development of tools to facilitate collaborative modelling, model sharing, and the use of novel hardware (GPU, neuromorphic) for neuronal simulations, notably PyNN, NineML and NeuroML.
- promoting reproducible research in computational neuroscience and neuroinformatics, both through trying to spread best practices and through tool development (see the Sumatra project).
- promoting neurophysiology data sharing, by participation in international standardisation efforts, by development of tools to harmonize the handling of electrophysiology data in Python (see the Neo project), and by development of a framework to simplify databasing of neurophysiology data in small labs (see the Helmholtz project).
- development of models of the early visual system, from retina to primary visual cortex, in close collaboration with experimentalists.
Publications
Article dans une revue
2024
- ref_biblio
- Onur Ates, Shailesh Appukuttan, Hélissande Fragnaud, Corentin Fragnaud, Andrew P. Davison. NeoViewer: Facilitating reuse of electrophysiology data through browser-based interactive visualization. SoftwareX, 2024, 26, pp.101710. ⟨10.1016/j.softx.2024.101710⟩. ⟨hal-04551480⟩
- Accès au texte intégral et bibtex
2023
- ref_biblio
- Shailesh Appukuttan, Luca L. Bologna, Felix Schürmann, Michele Migliore, Andrew P. Davison. EBRAINS Live Papers - Interactive Resource Sheets for Computational Studies in Neuroscience. Neuroinformatics, 2023, 21 (1), pp.101-113. ⟨10.1007/s12021-022-09598-z⟩. ⟨hal-03783756⟩
- Accès au texte intégral et bibtex
2022
- ref_biblio
- Luca Leonardo Bologna, Roberto Smiriglia, Carmen Alina Lupascu, Shailesh Appukuttan, Andrew P. Davison, et al.. The EBRAINS Hodgkin-Huxley Neuron Builder: An online resource for building data-driven neuron models. Frontiers in Neuroinformatics, 2022, 16, pp.991609. ⟨10.3389/fninf.2022.991609⟩. ⟨hal-03788861⟩
- Accès au texte intégral et bibtex
- ref_biblio
- Andrew P. Davison, Shailesh Appukuttan. A faster way to model neuronal circuitry. eLife, 2022, 11, pp.e84463. ⟨10.7554/eLife.84463⟩. ⟨hal-04304568⟩
- Accès au texte intégral et bibtex
2021
- ref_biblio
- Sára Sáray, Christian A Rössert, Shailesh Appukuttan, Rosanna Migliore, Paola Vitale, et al.. HippoUnit: A software tool for the automated testing and systematic comparison of detailed models of hippocampal neurons based on electrophysiological data. PLoS Computational Biology, 2021, 17 (1), pp.e1008114. ⟨10.1371/journal.pcbi.1008114⟩. ⟨hal-03063383⟩
- Accès au texte intégral et bibtex
2020
- ref_biblio
- Sharon Crook, Andrew P. Davison, Robert Mcdougal, Hans Ekkehard Plesser. Editorial: Reproducibility and Rigour in Computational Neuroscience. Frontiers in Neuroinformatics, 2020, 14, pp.23. ⟨10.3389/fninf.2020.00023⟩. ⟨hal-02913122⟩
- Accès au texte intégral et bibtex
- ref_biblio
- Kael Dai, Juan Hernando, Yazan Billeh, Sergey Gratiy, Judit Planas, et al.. The SONATA data format for efficient description of large-scale network models. PLoS Computational Biology, 2020, 16 (2), pp.e1007696. ⟨10.1371/journal.pcbi.1007696⟩. ⟨hal-02913116⟩
- Accès au texte intégral et bibtex
- ref_biblio
- Andrew P. Davison. [Rp] Dendrodendritic inhibition and simulated odor responses in a detailed olfactory bulb network model. ReScience C, 2020, ⟨10.5281/zenodo.3972130⟩. ⟨hal-03046451⟩
- Accès au texte intégral et bibtex
2019
- ref_biblio
- Padraig Gleeson, Matteo Cantarelli, Boris Marin, Adrian Quintana, Matt Earnshaw, et al.. Open Source Brain: A Collaborative Resource for Visualizing, Analyzing, Simulating, and Developing Standardized Models of Neurons and Circuits. Neuron, 2019, 103 (3), pp.395. ⟨10.1016/j.neuron.2019.05.019⟩. ⟨hal-02193259⟩
- Accès au texte intégral et bibtex
2018
- ref_biblio
- Ján Antolík, Andrew P. Davison. Arkheia: Data Management and Communication for Open Computational Neuroscience. Frontiers in Neuroinformatics, 2018, 12, pp.6. ⟨10.3389/fninf.2018.00006⟩. ⟨hal-01737956⟩
- Accès au texte intégral et bibtex
- ref_biblio
- Inga Blundell, Romain Brette, Thomas A Cleland, Thomas G Close, Daniel Coca, et al.. Code Generation in Computational Neuroscience: A Review of Tools and Techniques. Frontiers in Neuroinformatics, 2018, 12, pp.68. ⟨10.3389/fninf.2018.00068⟩. ⟨hal-01996352⟩
- Accès au texte intégral et bibtex
2017
- ref_biblio
- Stephen Eglen, Ben Marwick, Yaroslav Halchenko, Michael Hanke, Shoaib Sufi, et al.. Toward standard practices for sharing computer code and programs in neuroscience. Nature Neuroscience, 2017, 20 (6), pp.770-773. ⟨10.1038/nn.4550⟩. ⟨hal-02064847⟩
- Accès au bibtex
- ref_biblio
- Padraig Gleeson, Andrew P. Davison, R Angus Silver, Giorgio Ascoli. A Commitment to Open Source in Neuroscience. Neuron, 2017, 96 (5), pp.964-965. ⟨10.1016/j.neuron.2017.10.013⟩. ⟨hal-02064834⟩
- Accès au bibtex
- ref_biblio
- Nicolas P. Rougier, Konrad Hinsen, Frédéric Alexandre, Thomas Arildsen, Lorena Barba, et al.. Sustainable computational science: the ReScience initiative. PeerJ Computer Science, 2017, 3, pp.e142. ⟨10.7717/peerj-cs.142⟩. ⟨hal-01592078⟩
- Accès au texte intégral et bibtex
- ref_biblio
- Leonid L. Rubchinsky, Sungwoo Ahn, Wouter Klijn, Ben Cumming, Stuart Yates, et al.. 26th Annual Computational Neuroscience Meeting (CNS*2017): Part 2. BMC Neuroscience, 2017, 18 (Suppl 1), pp.59. ⟨10.1186/s12868-017-0371-2⟩. ⟨hal-01580190⟩
- Accès au texte intégral et bibtex
2016
- ref_biblio
- Christophe Pouzat, Andrew P. Davison, Konrad Hinsen. La recherche reproductible : une communication scientifique explicite. Statistique et Société, 2016, Deux débats sur les données, 3 (1). ⟨hal-01478360⟩
- Accès au bibtex
2015
- ref_biblio
- Eilif Muller, James A Bednar, Markus Diesmann, Marc-Oliver Gewaltig, Michael Hines, et al.. Python in neuroscience.. Frontiers in Neuroinformatics, 2015, 9, pp.11. ⟨10.3389/fninf.2015.00011⟩. ⟨hal-01159440⟩
- Accès au bibtex
2014
- ref_biblio
- Mikael Djurfeldt, Andrew P. Davison, Jochen M Eppler. Efficient generation of connectivity in neuronal networks from simulator-independent descriptions.. Front Neuroinform, 2014, 8, pp.43. ⟨10.3389/fninf.2014.00043⟩. ⟨hal-01055563⟩
- Accès au bibtex
- ref_biblio
- Samuel Garcia, Domenico Guarino, Florent Jaillet, Todd Jennings, Robert Pröpper, et al.. Neo: an object model for handling electrophysiology data in multiple formats.. Frontiers in Neuroinformatics, 2014, 8, pp.10. ⟨10.3389/fninf.2014.00010⟩. ⟨hal-01055571⟩
- Accès au texte intégral et bibtex
- ref_biblio
- Michael Vella, Robert C Cannon, Sharon M. Crook, Andrew P. Davison, Gautham Ganapathy, et al.. libNeuroML and PyLEMS: using Python to combine procedural and declarative modeling approaches in computational neuroscience.. Front Neuroinform, 2014, 8, pp.38. ⟨10.3389/fninf.2014.00038⟩. ⟨hal-01055565⟩
- Accès au bibtex
2013
- ref_biblio
- Ján Antolík, Andrew P. Davison. Integrated workflows for spiking neuronal network simulations.. Front Neuroinform, 2013, 7, pp.34. ⟨10.3389/fninf.2013.00034⟩. ⟨hal-01055572⟩
- Accès au bibtex
2012
- ref_biblio
- Sharon M. Crook, James A Bednar, Sandra Berger, Robert Cannon, Andrew P. Davison, et al.. Creating, documenting and sharing network models.. Network: Computation in Neural Systems, 2012, 23 (4), pp.131-49. ⟨10.3109/0954898X.2012.722743⟩. ⟨hal-01055577⟩
- Accès au bibtex
- ref_biblio
- Andrew P. Davison. Collaborative modelling: the future of computational neuroscience?. Network: Computation in Neural Systems, 2012, 23 (4), pp.157-66. ⟨10.3109/0954898X.2012.718482⟩. ⟨hal-01055579⟩
- Accès au bibtex
- ref_biblio
- Andrew P. Davison. Automated Capture of Experiment Context for Easier Reproducibility in Computational Research. Computing in Science and Engineering, 2012, 14 (4), pp.48-56. ⟨10.1109/MCSE.2012.41⟩. ⟨hal-01055702⟩
- Accès au bibtex
2011
- ref_biblio
- Daniel Brüderle, Mihai A Petrovici, Bernhard Vogginger, Matthias Ehrlich, Thomas Pfeil, et al.. A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systems.. Biological Cybernetics (Modeling), 2011, 104 (4-5), pp.263-96. ⟨10.1007/s00422-011-0435-9⟩. ⟨hal-00635967⟩
- Accès au bibtex
2010
- ref_biblio
- Padraig Gleeson, Sharon M. Crook, Robert C Cannon, Michael L Hines, Guy O Billings, et al.. NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail.. PLoS Computational Biology, 2010, 6 (6), pp.e1000815. ⟨10.1371/journal.pcbi.1000815⟩. ⟨hal-00586776⟩
- Accès au bibtex
2009
- ref_biblio
- Daniel Brüderle, Eric Muller, Andrew Davison, Eilif Muller, Johannes Schemmel, et al.. Establishing a Novel Modeling Tool: A Python-based Interface for a Neuromorphic Hardware System. Frontiers in Neuroinformatics, 2009, 3, pp.17. ⟨10.3389/neuro.11.017.2009⟩. ⟨hal-03047041⟩
- Accès au bibtex
- ref_biblio
- Andrew P. Davison, Daniel Brüderle, Jochen Eppler, Jens Kremkow, Eilif Muller, et al.. PyNN: A Common Interface for Neuronal Network Simulators.. Frontiers in Neuroinformatics, 2009, 2, pp.11. ⟨10.3389/neuro.11.011.2008⟩. ⟨hal-00586786⟩
- Accès au texte intégral et bibtex
- ref_biblio
- Andrew P. Davison, Michael L Hines, Eilif Muller. Trends in programming languages for neuroscience simulations.. Frontiers in Neuroscience, 2009, 3 (3), pp.374-80. ⟨10.3389/neuro.01.036.2009⟩. ⟨hal-00586787⟩
- Accès au bibtex
- ref_biblio
- Michael L Hines, Andrew P. Davison, Eilif Muller. NEURON and Python.. Front Neuroinformatics, 2009, 3, pp.1. ⟨10.3389/neuro.11.001.2009⟩. ⟨hal-00586782⟩
- Accès au bibtex
- ref_biblio
- Olivier Marre, Pierre Yger, Andrew P. Davison, Yves Frégnac. Reliable recall of spontaneous activity patterns in cortical networks.. Journal of Neuroscience, 2009, 29 (46), pp.14596-606. ⟨10.1523/JNEUROSCI.0753-09.2009⟩. ⟨hal-00444943⟩
- Accès au bibtex
2007
- ref_biblio
- Romain Brette, Michael Rudolph, Ted Carnevale, Michael Hines, David Beeman, et al.. Simulation of networks of spiking neurons: A review of tools and strategies.. Journal of Computational Neuroscience, 2007, 23 (3), pp.349-98. ⟨10.1007/s10827-007-0038-6⟩. ⟨hal-00180662⟩
- Accès au bibtex
2006
- ref_biblio
- Mathilde Badoual, Quan Zou, Andrew P. Davison, Michael Rudolph, Thierry Bal, et al.. Biophysical and phenomenological models of multiple spike interactions in spike-timing dependent plasticity.. International Journal of Neural Systems, 2006, 16 (2), pp.79-97. ⟨hal-00120626⟩
- Accès au bibtex
- ref_biblio
- Andrew P. Davison, Yves Frégnac. Learning cross-modal spatial transformations through spike timing-dependent plasticity.. Journal of Neuroscience, 2006, 26 (21), pp.5604-15. ⟨10.1523/JNEUROSCI.5263-05.2006⟩. ⟨hal-00120625⟩
- Accès au bibtex
2004
- ref_biblio
- Andrew P. Davison, Thomas M Morse, Michele Migliore, Gordon M Shepherd, Michael L Hines. Semi-automated population of an online database of neuronal models (ModelDB) with citation information, using PubMed for validation.. Neuroinformatics, 2004, 2 (3), pp.327-32. ⟨10.1385/NI:2:3:327⟩. ⟨hal-00299855⟩
- Accès au bibtex
2003
- ref_biblio
- Andrew P. Davison, Jianfeng Feng, David Brown. Dendrodendritic inhibition and simulated odor responses in a detailed olfactory bulb network model.. Journal of Neurophysiology, 2003, 90 (3), pp.1921-35. ⟨10.1152/jn.00623.2002⟩. ⟨hal-00299879⟩
- Accès au bibtex
- ref_biblio
- Michele Migliore, Thomas M Morse, Andrew P. Davison, Luis Marenco, Gordon M Shepherd, et al.. ModelDB: making models publicly accessible to support computational neuroscience.. Neuroinformatics, 2003, 1 (1), pp.135-9. ⟨10.1385/NI:1:1:135⟩. ⟨hal-00586793⟩
- Accès au bibtex
2000
- ref_biblio
- Andrew P. Davison, J. Feng, D. Brown. A reduced compartmental model of the mitral cell for use in network models of the olfactory bulb.. Brain Research Bulletin, 2000, 51 (5), pp.393-9. ⟨hal-00635986⟩
- Accès au bibtex