CD38-NADase is a new major contributor to Duchenne muscular dystrophic phenotype.

Two important deleterious features are a Ca2+ dysregulation linked to Ca2+ influxes associated with ryanodine receptor hyperactivation, and a muscular nicotinamide adenine dinucleotide (NAD+ ) deficit. Here, we identified that deletion in mdx mice of CD38, a NAD+ glycohydrolase-producing modulators of Ca2+ signaling, led to a fully restored heart function and structure, with skeletal muscle performance improvements, associated with a reduction in inflammation and senescence markers. Muscle NAD+ levels were also fully restored, while the levels of the two main products of CD38, nicotinamide and ADP-ribose, were reduced, in heart, diaphragm, and limb. In cardiomyocytes from mdx/CD38-/- mice, the pathological spontaneous Ca2+ activity was reduced, as well as in myotubes from DMD patients treated with isatuximab (SARCLISA® ) a monoclonal anti-CD38 antibody. Finally, treatment of mdx and utrophin-dystrophin-deficient (mdx/utr-/- ) mice with CD38 inhibitors resulted in improved skeletal muscle performances. Thus, we demonstrate that CD38 actively contributes to DMD physiopathology. We propose that a selective anti-CD38 therapeutic intervention could be highly relevant to develop for DMD patients.

CD38-NADase is a new major contributor to Duchenne muscular dystrophic phenotype. Antoine de Zélicour, Abdallah Fayssoil, Mbarka Dakouane-Giudicelli, Isley De Jesus, Ahmed Karoui, Faouzi Zarrouki, Florence Lefebvre, Arnaud Mansart, Jean-Marie Launay, Jerome Piquereau, Mariana G Tarragó, Marcel Bonay, Anne Forand, Sophie Moog, France Piétri-Rouxel, Elise Brisebard, Claudia C S Chini, Sonu Kashyap, Matthew J Fogarty, Gary C Sieck, Mathias Mericskay, Eduardo N Chini, Ana Maria Gomez, José-Manuel Cancela, Sabine de la Porte.

Article published in EMBO Molecular MedicineAccess to the manuscript